Tagged: storage

The ABC of climate change: Carbon Capture Storage

Carbon Capture Storage (CCS) is an integrated set of technologies that prevent carbon dioxide from being released into the atmosphere during the combustion of fossil fuels. It is mainly mentioned in the context of large power plants running on coal, gas or biomass.

There are three main steps to avoid CO2 escaping into the air:

  1. Seperate the carbon dioxide from the other exhaust gases
  2. Compress and transport the CO2 via pipelines to a suitable site for geological storage, typically salt caves, old mines etc
  3. Inject the CO2 deep underground, often at depths of more than one kilometer
Graphical representation of the Carbon Capture and Storage process (graph: University of Nottingham)

Graphical representation of the Carbon Capture and Storage process (graph: University of Nottingham)

CCS is not a new technology and has been applied since the mid nineties, although the amount of CO2 captured and stored remains marginal.

Carbon Capture and Storage got renewed attention when the IPCC’s latest progress report (fall of 2014) announced that the technology was crucial if we want to limit Earth’s temperature rise below 2°C by 2100. They estimated that big emissions cuts would cost more than double when not applying CCS technologies.

Although some say that CCS will allow us to keep consuming fossil fuels at an increasing rate, that is not really true. The processes itself are energy intensive so the overall efficiency of the energy generation process including the carbon capture goes down significantly. In addition, there are concerns regarding the long-term storability and possible leakage of the CO2 out of the caves and rock formations.


Photo of the week: Did Elon Musk just start a new revolution?

Last Thursday, Elon Musk presented the heavily-anticipated Powerwall – Tesla’s scalable battery which Musk believes could revolutionize the way we consume, produce and store energy. The largest barriers today for solar and wind power are the well-known villains: sun doesn’t shine 24 hours a day, nor does the wind blow whenever we would like it to. For years, scientists and engineers are searching furiously for a solution to store renewable energy to match electricity production from renewable sources with electricity demand at every given moment. Batteries, hydrogen storage, compressed air storage… many scenarios are being investigated at the moment and no-one found a decent cost-effective solution, yet. And then came Elon Musk, CEO of Tesla, SpaceX and other ambitious companies. No surprise his keynote last Thursday has been followed with enormous interest.

The Powerwall is a lithium-ion battery starting from 7kWh at 3000$, but is infinitely scalable which means it both targets families and companies. Musk believes Powerwall makes it possible to go off-grid, which means families or companies become fully self-sufficient via a combination of renewable energy generation and storage with one or more Powerwall devices. But what is the real innovation behind the Powerwall? That’s a bit unclear up till now. Besides the fact the battery is cheap thanks to the Gigafactory that will build them, it is still good’ol lithium-ion technology. And going off-grid is easier said than done. Keeping a local grid at the right frequency (50Hz in Europe, 60Hz in US) is not easy. It is vital though for correct operation of computers, domestic electronics as well as industrial machines. For now, it seems people are willing to give it a try: 5 days after Musk’s keynote he announced they reached a total of 38 000 pre-orders.

Elon Musk presenting Tesla's Powerwall

Elon Musk presenting Tesla’s Powerwall



Tesla’s Powerwall official website

The Verge

Watch Musk’s keynote