Tagged: coal

Civil disobedience in 2016: the war on fossil fuels has begun

photo: Eamon Ryan

Three weeks after the official signing ceremony of the Paris Agreement in the U.N. headquarters in New York, 177 countries have signed the document agreed upon during COP 21 in Paris last year. As I explained in more detail in a previous post, the agreement will only take force when 55 of the countries effectively adopt it in their national parliament. Currently we’re stuck at 16 — covering a dreadful 0.04% of global greenhouse gas emissions.

Time to raise the pressure on policy makers. Under the banner of Break Free, climate activists around the world have opened the war on fossil fuels. During 12 days in May, civil disobedience actions target some of the world’s most polluting and dangerous fossil fuel projects.



The ABC of climate change: Carbon Capture Storage

Carbon Capture Storage (CCS) is an integrated set of technologies that prevent carbon dioxide from being released into the atmosphere during the combustion of fossil fuels. It is mainly mentioned in the context of large power plants running on coal, gas or biomass.

There are three main steps to avoid CO2 escaping into the air:

  1. Seperate the carbon dioxide from the other exhaust gases
  2. Compress and transport the CO2 via pipelines to a suitable site for geological storage, typically salt caves, old mines etc
  3. Inject the CO2 deep underground, often at depths of more than one kilometer
Graphical representation of the Carbon Capture and Storage process (graph: University of Nottingham)

Graphical representation of the Carbon Capture and Storage process (graph: University of Nottingham)

CCS is not a new technology and has been applied since the mid nineties, although the amount of CO2 captured and stored remains marginal.

Carbon Capture and Storage got renewed attention when the IPCC’s latest progress report (fall of 2014) announced that the technology was crucial if we want to limit Earth’s temperature rise below 2°C by 2100. They estimated that big emissions cuts would cost more than double when not applying CCS technologies.

Although some say that CCS will allow us to keep consuming fossil fuels at an increasing rate, that is not really true. The processes itself are energy intensive so the overall efficiency of the energy generation process including the carbon capture goes down significantly. In addition, there are concerns regarding the long-term storability and possible leakage of the CO2 out of the caves and rock formations.


Photo of the week: Google’s engines go green

Data centres are the engines of the internet. They are the places where the network of servers and fibre-optic cables are housed to provide the vast online services of Google. But they fret energy and until now this energy is mainly provided by nuclear and coal power. Around 35% of their data centres are powered by renewable sources, but Google aims for a 100% renewable operation in the future. Although the company didn’t give an end-date for this transition, they clearly want to compete with Apple, whose data centres are already 100% running on renewables since 2012 and is the company is now looking to improve the footprint of their production processes.

Google made a big move recently by buying an old coal-fired power plant in Alabama that will be turned it into a 100% renewably powered data centre. Patrick Gammons, a senior manager of Google’s Data Center Energy and Location Strategy, explained the decision on his blog. “Decades of investment shouldn’t go to waste just because a site has closed; we can repurpose existing electric and other infrastructure to make sure our data centers are reliably serving our users around the world.”

Google will turn this coal mine in a fully renewable powered data centre (photo: Google)

Google will turn this coal mine in a fully renewable powered data centre (photo: Google)


The Guardian